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Abstract—This paper aims to define a multi-dimensional risk
space for a robot moving in a shared environment with human
operators. The dimensions of the risk space are defined as the
risk factors which may lead to an undesired event. An analysis
of the robot state variables on which each individual risk source
may depend leads to the introduction of a fuzzy inference system
to quantify the risk levels in the particular case study. The
methodology presented in this paper outlines a general way to
characterize risk for autonomous agents working in partially
unknown environments, which generalizes to most human-robot
collaboration scenarios. The proposed framework is also flexible
to the introduction of new risk factors.

Index Terms—risk assessment, human-robot collaboration,
risk-aware motion planning

I. INTRODUCTION

Based on the current literature, in a human-robot col-
laboration scenario, the risk is intended as the hazard the
robot poses to the external world, in particular to the human
operator in compliance with the collaborative robot safety
specifications [3]. However, according to the risk management
literature, risk is defined as the likelihood of a detrimental
event occurring to a project [1], [2], that becomes the desired
task for a robot. In an intralogistics scenario, there are not just
risks related to the operator’s safety but also risks of collisions
with fixed and moving obstacles (e.g., forklifts), risks of delays
in respect of settled deadlines (e.g., fetching an item that
is coming from a conveyor belt), and risks related to the
robot’s self-safety (e.g., overheating, vibrations). Therefore,
there is a need to broaden the concept of risk to include all
the detrimental events that may prevent the task’s success.
This work aims to identify the main risk factors involved and
propose a map to quantify the risk levels both offline and
online. Minimizing a risk function that depends not only on
safety measures but also on performance indexes (e.g., the
execution time for the delay risk) will allow obtaining robot
trajectories that allow the robot to execute the desired task
while guaranteeing efficiency and safety.

II. CONTEXT DEFINITION

The considered use case scenario is an intralogistics ware-
house, where mobile robots and humans operate in a shared

environment without physical barriers. In particular, the con-
sidered robot is a 7 DoF (Degree of Freedom) PANDA
manipulator mounted on an omnidirectional mobile platform.
The task consists in going to shelf A, picking the desired item,
and bringing it to tray B. When approaching B, the robot may
throw the object into the target or place the object directly in
the tray, if the throw failure risk is too high. We can decompose
the task into three phases, in which we will have different risk
factors:

• Navigation phase: In this phase, the mobile base moves
the robot to reach the right shelf or to deliver the items.

• Picking and placing phase: In this phase,and the robotic
arm performs the pick (or place) operation.

• Throwing phase: In this phase, the manipulator moves to
reach the best throwing configuration.

III. RISKS IDENTIFICATION AND ASSESSMENT

To identify the involved risk factors we developed and
merged independent lists, including suggestions and inputs
from industry partners of the European Project DARKO.

We cataloged the most relevant detected risk factors within
the following families:

• Performance risks: Risks concerning the quality of the
task execution. (e.g., excessive power consumption leads
to increased costs and fewer tasks that can be performed
in a charge cycle, and delay in fetching an object from a
conveyor belt can cause the assigned task to fail);

• External risks: Risks related to the damage that the
movement of the robot can cause to other agents involved
in the tasks or near the robot (humans, obstacles), in
compliance with the ISO/TS 15066;

• Internal risks: Risks related to the damage that the robot
movement can cause to the robot itself (e.g., damage to
the motors due to vibration or overheating, self-collisions
between the manipulator and the moving base).

Every detected risk represents a “risk factor” in our multi-
dimensional “risk space”. The risk level of each risk factor
can be expressed quantitatively by combining the probability
that the hazardous event occurs and its severity [1], [4].We
use a Takagi-Sugeno-Kang fuzzy inference system to map
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probability and severity to a scale that quantifies the risk
level. In this way, the map on the risk scale is continuous.
We defined five levels for probability (Almost Impossible,
Low, Medium, High, Almost certain), and four for severity
(Minor, Moderate, Severe, Catastrophic). We chose trapezoidal
membership functions and a structure-oriented approach to
generate the fuzzy rules. For each risk factor, the risk level
span between 0 and 6.

Of course, not all risks may assume all the possible severity
levels, and only the risks addressing human safety may reach
the catastrophic level.

To compute probability (or severity) for each risk, we pro-
pose another fuzzy inference system. This system would have
as inputs the variables on which the probability (or severity)
of the risk depends. The output will be the sought-after value
of probability or severity, which will then enter the risk level
inference system, thus creating a fuzzy tree. However, if a
more accurate metric to quantify probability or severity for
a specific risk is available, the obtained value can be used
directly in the risk level inference system. This approach
allows a single framework with heterogeneous metrics.

IV. PLANNING MINIMIZING RISK

In this section, based on the previously defined level of
individual risk factor, we propose an overall index that takes
into account all possible risks encountered by the robot during
the task execution.

We express the global risk index as a RealSoftMax function
of the concurrent risk factors.In this way, it is possible to
penalize high levels of risk but to still distinguish between
one system state where all risk levels assume the same value
(e.g., two) and one where only one risk assumes the maximum
value (e.g., only one risk level is two and the others are zero
or one), with the former representing a more dangerous state.

Global Risk Index = log(
∑

erisk factors) (1)

As a first attempt to compute the reference risk-driven
offline trajectories for the manipulation phase, we propose
to solve the problem with a genetic algorithm, where the
fitness function is the Global Risk Index (GRI) defined above
(considering the maximum value reached from each risk index
along the trajectory), with a few additions: lim is a strongly
penalizing term if the kinematic limits of the robot (speed,
accelerations, jerks) are exceeded, ∥xf − x̂f∥2 it’s the distance
between the real and the desired final point, and sl that is the
generated End-Effector (EE) spline length.

Fitness Function = 1000∗∥xf − x̂f∥2+10∗sl+lim+GRI (2)

We take as variables ten positions for each joint (so seventy
variables 10x7) and the ten instants of time in which the robot
will reach these positions (other ten variables), so in total, we
have 80 variables. The calculation of the terms present in the
fitness function is carried out by interpolating joints’ position
values and the times at which they are reached with cubic
splines. Then, we find a B-spline which approximates the EE

Fig. 1. Levels of collisions with fixed obstacles and non-smooth path along the
planned trajectories after 1, 5, 150 generations, using the genetic algorithm
approach, during the manipulation phase. The initial population contains a
good solution, but it does not take into account the presence of the known
offline obstacle (the dark sphere). After 5 generations, the algorithm starts
to avoid the obstacle, but the resulting trajectory is not particularly smooth.
After 150 generations, the algorithm found a good solution that guarantees
collision avoidance while keeping the other risk values low.

trajectory, resulting from direct kinematics, and we use it to
evaluate the task space related risks.

V. RESULTS

The identified risks during the three motion phases have
been reported in tables including a description of the hazardous
situation, the family to which the risk belongs, and the
planning stages in which the risk should be assessed and
minimized (offline motion planning, task scheduling, online
trajectory modification during path execution). For each iden-
tified risk, the levels of severity were indicated as well as a
precise definition was given. Risk factors were then analyzed,
underlining the state variables and the parameters on which
probability and severity depend for that risk. From the variable
and the parameter values, fuzzy logic inference systems are
used to assess the probability and severity values. The genetic
algorithm approach for the manipulation trajectory generation
was tested for an offline planning scenario with fixed initial
joint configuration q0 to reach a desired final position in the
task space xf in the presence of a fixed obstacle (see Fig. 1).
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